In pytorch, when you perform the backward step (calling loss.backward()
or similar) the gradients are accumulated in-place. This means that if you call loss.backward()
multiple times, the previously calculated gradients are not replaced, but in stead the new gradients get added on to the previous ones. That is why, when using pytorch, it is usually necessary to explicitly zero the gradients between minibatches (by calling optimiser.zero_grad()
or similar).
If your batch size is limited, you can simulate a larger batch size by breaking a large batch up into smaller pieces, and only calling optimiser.step()
to update the model parameters after all the pieces have been processed.
For example, suppose you are only able to do batches of size 64, but you wish to simulate a batch size of 128. If the original training loop looks like:
optimiser.zero_grad()
loss = model(batch_data) # batch_data is a batch of size 128
loss.backward()
optimiser.step()
then you could change this to:
optimiser.zero_grad()
smaller_batches = batch_data[:64], batch_data[64:128]
for batch in smaller_batches:
loss = model(batch) / 2
loss.backward()
optimiser.step()
and the updates to the model parameters would be the same in each case (apart maybe from some small numerical error). Note that you have to rescale the loss to make the update the same.